首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25076篇
  免费   3405篇
  国内免费   814篇
电工技术   633篇
技术理论   1篇
综合类   1264篇
化学工业   6945篇
金属工艺   3827篇
机械仪表   752篇
建筑科学   609篇
矿业工程   1557篇
能源动力   1002篇
轻工业   1162篇
水利工程   106篇
石油天然气   385篇
武器工业   52篇
无线电   1490篇
一般工业技术   5427篇
冶金工业   3686篇
原子能技术   152篇
自动化技术   245篇
  2024年   70篇
  2023年   523篇
  2022年   591篇
  2021年   1103篇
  2020年   1101篇
  2019年   1008篇
  2018年   1038篇
  2017年   1129篇
  2016年   1287篇
  2015年   1213篇
  2014年   1710篇
  2013年   1922篇
  2012年   1793篇
  2011年   1995篇
  2010年   1404篇
  2009年   1347篇
  2008年   1155篇
  2007年   1320篇
  2006年   1256篇
  2005年   1017篇
  2004年   800篇
  2003年   700篇
  2002年   638篇
  2001年   541篇
  2000年   459篇
  1999年   348篇
  1998年   300篇
  1997年   255篇
  1996年   234篇
  1995年   219篇
  1994年   181篇
  1993年   118篇
  1992年   119篇
  1991年   74篇
  1990年   78篇
  1989年   64篇
  1988年   51篇
  1987年   23篇
  1986年   17篇
  1985年   20篇
  1984年   17篇
  1983年   5篇
  1982年   16篇
  1981年   11篇
  1980年   5篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
铸造车间生产的N330飞轮在加工Ф1025处M20螺栓孔时会出现一处或多处缩松缺陷,造成了该品种废品率的增加,为解决此缩松问题对飞轮进行了跟踪研究,分析并改进了飞轮的造型、冒口补缩和浇注工艺,通过试制验证了工艺改进的合理性。  相似文献   
32.
Porous carbon nanostructures are promising supports for stabilizing the highly dispersed metal nanoparticles and facilitating the mass transfer during the reaction, which are critical to achieve the high efficiency of hydrogen generation from sodium borohydride dehydrogenation. Herein, the catalytically active porous architectures are simply prepared by using 2-methylimidazole and melamine as reactive sources. The structural and compositional characterizations reveal the coexistence of metallic cobalt and N-doped carbon in porous architectures. Electron microscopy observations indicate that the synthesized products are smartly constructed from the carbon nanosheets with densely dispersed Co nanoparticles. Due to the notable structural features, the prepared Co@NC-600 sample presents the highly efficient activity for catalytic hydrolysis of NaBH4 with a hydrogen generation rate of 2574 mL min−1 gcat−1 and an activation energy of 47.6 kJ mol−1. The catalytically active metallic Co and suitable support-effect of N-doped carbon are responsible for catalytic dehydrogenation.  相似文献   
33.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   
34.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   
35.
This study investigates the effect of two different iron compounds (zero-valent iron nanoparticle: nZVI and iron oxide nanoparticles: nIO) and pH on fermentative biohydrogen production from molasses-based distillery wastewater. The nZVI and nIO of optimum particle sizes of 50 nm and 55 nm respectively were synthesized and applied for fermentative hydrogen (H2) production. The addition of nIO & nZVI at (0.7 g/L, pH: 6) resulted in the highest H2 yield, H2 production rate, H2 content and COD reduction. Moreover, the kinetic parameters of H2 production potential (P) and H2 production rate (Rm) increased to 387 mL, and 22.2 mL/h, respectively for nZVI, these values were 363 mL and 21.8 mL/h for nIO. The results obtained indicated the positive effect of nZVI and nIO addition on enhanced fermentative H2 production. The addition of nZVI & nIO resulted in 71% and 69.4% enhancement in biohydrogen production respectively.  相似文献   
36.
We report the catalytic enhancement of hydrogen generation by 1) in situ Fe (0) formed and 2) nitroarenes substrates during Fe3O4@Pd core-shell nanoparticles catalyzed tandem reaction. The active hydrogen species are generated in Pd shell, which either combine to form H2 gas or take part in relatively faster nitroarene reduction reaction. The rate of hydrogen generation from ammonia borane is dependent on the nitroarene substrate and is higher when 4-nitrophenol is used. This is due to the difference in ammonia borane adsorption on the surface of the catalyst. During recyclability, the H2 generation rate of 2 wt% Pd loaded samples is higher than other compositions. Such an enhancement has been attributed to the formation of Fe (0) via γ-FeOOH mediated by Pd species, presumably through Pd(OH)2. The electronic connection between Fe and Pd interface is thus shown to play an important role in the catalytic enhancement of the tandem reaction.  相似文献   
37.
In this paper, Pt nanoparticles (Pt NPs) deposited hybrid carbon support is prepared by modifying double-layered hollow carbon spheres(DLHCs)with poly(3,4-ethylenedioxythiophene) (PEDOT) and used as anode catalyst of methanol oxidation. The structure of nanocomposites is characterized by SEM, TEM, FT-IR, XRD and XPS, confirming the greatly enhanced synergistic effect between the PEDOT and DLHCs, and illustrating the uniform distribution of Pt NPs on the PEDOT/DLHCs composite surface with a small particle size (~2.63 nm). Cyclic voltammetry, chronoamperometry and impedance spectroscopy applied to determine the electrocatalytic activity of catalysts, it is found that the synthesized PEDOT/DLHCs/Pt possesses excellent characteristics such as large electrochemically active surface area and high mass activity of 59.45 m2 g−1 and 807 mA mg−1 in 0.5 M H2SO4 containing 1 M methanol solution, which is almost 1.24 and 2.8 times greater than those of commercial Pt/C, and the catalyst exhibits superior stability after 500 durability cycles. The enhanced electrocatalytic behavior can be ascribed to the excellent electronic conductivity of PEDOT-modified DLHCs and the strong binding of PEDOT/DLHCs to Pt NPs, suggesting that the PEDOT/DLHCs/Pt is a promising electrocatalyst for direct methanol fuel cell.  相似文献   
38.
《Ceramics International》2022,48(9):12537-12548
Enhancing the electrical conductivity of electrode materials via a cationic substitution strategy was recognized as an effective way of improving the electrochemical performance of Li-ion batteries. Thus, LixCa1-xFe2O4 nanoparticles were synthesized via a facile inexpensive process at low temperature. XRD peaks refer to the formation of an orthorhombic structure with the Pnma space group. HR-TEM investigations reveal orthorhombic-like shape for pure CaFe2O4, nanoplatelet-like morphology for Li0.05Ca0.95Fe2O4 and irregular distorted crystals for Li0.1Ca0.9Fe2O4. Voids and pores in Li-doped CaFe2O4 were confirmed by FESEM and BET measurements. XPS spectra of O1s prove that Li-doped CaFe2O4 have higher conductivity due to the created lattice defects and oxygen species. Li-doped CaFe2O4 anodes exhibit great improvement in their initial discharge capacities ~1219 and 1606 mAhg?1 upon substitution of Ca with 5% and 10% Li, respectively. Furthermore, 10% Li-doped CaFe2O4 anode displays the highest Li-ions diffusion coefficient and exchange current density due to the enhanced Li+ ions mobility. Moreover, the DC activation energies for the LixCa1-xFe2O4 nanoparticles decreased with increasing Li content.  相似文献   
39.
《Ceramics International》2022,48(9):12014-12027
The formed deposits wear out of refractory wall linings in the rotary kiln and may cause production disturbances. This study describes the chemical composition and mineralogical phase components at the deposit/refractory interface in the rotary kiln for fluxed iron ore pellets production. The main phases of refractory bricks are corundum and mullite, while the deposits mainly contain hematite and silicates. The main phases in the deposit/refractory brick contact zone are hematite, anorthite (CaAl2Si2O8), mullite, corundum, and silicates. Moreover, the hematite phases in the deposit/brick interface averagely contain 6.98 wt% Al and 1.38 wt% Ti. The silicates in the contact zone contain higher aluminium content and lower iron content than the silicates in the deposits. Finally, the thermodynamic analysis indicates that the main phases in the deposits can react with the refractory to form Al2Fe2O6, CaAl2Si2O8, feldspar, and liquid phases lead to the degradation of bricks in the kiln during the iron ore pellets production.  相似文献   
40.
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application. In this review, we give a comprehensive introduction to the recent advancements of melanin-like nanoparticles in the field of photothermal therapy in the past decade. In this review, the synthesis pathway, internal mechanism and basic physical and chemical properties of melanin-like nanomaterials are systematically classified and evaluated. It also summarizes the application of melanin-like nanoparticles in bioimaging and tumor photothermal therapy (PTT)in detail and discussed the challenges they faced in clinical translation rationally. Overall, melanin-like nanoparticles still have significant room for development in the field of biomedicine and are expected to applied in clinical PTT in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号